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Electromagnetic Fields and Waves (1)

Electrical properties of a medium are specified by its constitutive parameters:
. permesbility, = ngmn, (for free space, m® m, = 4p~ 10°" H/m)
. permittivity, e =eze, (for free space, e © e, =8.85" 10" F/m)
. conductivity, s (for ametal, s ~10’ Sm)

Electric and magnetic field intensities are E(x,y, z,t) V/mand H(x,y,z,t) A/m
. they are vector functions space and time, e.g., in cartesian coordinates

E(X,Y,zt) = XEx(X,Y, Z,t) + YE (X, Y, Z,t) + ZE,(X, Y, Z,)

- similar expressions for other coordinates systems
- fields arise from currents J and charges r,, on the source (J isthe volume

current density in A/m? and ry isvolume charge density in C/m3)

Electromagnetic fields are completely described by Maxwell’ s equations:

()R’ E=-m1]”—|: (3)RixA =0

) K° |3|:3+e1111—|:£ (@) RE=r,le
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Electromagnetic Fields and Waves (2)

Most sources of electromagnetic fields have a sinusoidal variation in time (time-harmonic
sources). All of the field quantities associated with the sources will have the same
sinusoidal time variation. Therefore, we suppress the time dependence for convenience,
and work with atime independent quantity called a phasor. The two are related by

E(zt) = R{E(e M

. E(2) isthe phasor representation; E(zt) is the instantaneous quantity
. Re{} isthe real operator (i.e., “take the real part of”)

. J =.-1
Since the time dependence varies as e/t the time derivativesin Maxwell’s eguations
can bereplaced by 7/t ° jw inthe time-harmonic case:
(MN" E=-jwnH (3)N:H=0
2N " H=J+jweE (ANxE=r,/e

Any fields or waves that exist in aparticular region of space must satisfy Maxwell’s
equations and the appropriate boundary conditions.
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Derivation of the Wave Equation (1)

The wave equation in a source free region of space (J =0, r,, = 0) isderived by taking the
curl of Maxwell’ s first equation:

N (N E)=R G- mi 9 m— (N’ I:I):-m—ge—+:- el E

where it is assumed that the medium istime invariant (Im and e not time dependent). Now
use the vector identity

to obtain
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Derivation of the Wave Equation (2)

The subscript “c” denotes the possibility of a complex quantity: e, =e(- jeand
ne. = n( jn Theimaginary terms are nonzero if the medium islossy. Also, we have

defined
g°a+jb=jke = jw./mec

where a = attenuation constant (Np/m) and b =2p /I = phase constant (rad/m). Infree
space, which is alossless medium, the subscripts “0” are often used

€. =€y,,M=m P a=0,b=w,e,m

Frequently Kisused in place of b when the medium islossless and unbounded. Thereisa
similar wave equation that can be derived for the magnetic field intensity

N2H - gH =0
The simplest solutions to the wave equations are plane waves. An example of a plane
wave propagating in the zdirection is:

E(z) = XE e %
In general, E, isacomplex constant that depends on the strength of the source and its
distance from the observer at z
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Derivation of the Wave Equation (3)

The instantaneous value of the electric field is

E(zt) = RelE(2)e" } = RE,e" 2% coswt - bz)
Time snapshots of the field are shown below

. Wwave propagates in the +z direction

S S | | - | = wavelength
Bot l l DIRECTION OF - W= 2p f (rad/sec)
PROPAGATION u
h — . f =|—p= frequency (Hz)
z o W 1 .
> - phase velocity isu, =—=—— (in
, p ylsup = e (
free space up, = ¢ =2.998" 10° m/s)
- X polarized (direction of the electric
" Bo| field vector is X)

. maximum amplitude of the waveis E,
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Derivation of the Wave Equation (4)

—

The magnetic field vector is obtained from Maxwell’ s first equation N” E = - jwnH

N E R (s ™) 1

A=l . [Eoe )y = 52 E e 7
- Jwm - jwm we Iz we
%K_J
OHO
L N E
The intrinsic impedance of the mediumish © “'= E]:H—O' Plane waves are
€ 0

transverse electromagnetic (TEM)
waves, and obey the simple relationship

—

:% where K is aunit vector in

the direction of propagation (2 in this i H
case). Thevectors (k,E,H) are k «™
mutually orthogonal and form aright- giacaliva

handed system.
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Plane Wave Amplitude

Snapshot of a plane wave propagating in the +y direction E(y,t) = 2E, cos(wt - by) at
timet=0

ehectric fiakd strength
= -
!

A
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Poynting’s Theorem

Poynting’ s theorem is a statement of conservation of energy. For avolume of space, V,
bounded by a closed surface, S and filled with amedium (s ,,e)

HEF).ds =- T oflee2 s inn2hy- pE2dv
S ﬂtV ° ° V

POWERFLOWING POWERSTOREDIN THE  POWER
THROUGH S FIELDSINSIDE OFS LOSSIN S

o J

The quantity W =E~ H (W/m?) is known as the Poynting vector. The instantaneous
value of the Poynting vector is

W(x, Y, zt) = E(x,y,zt) H(Xy,zt)= Re{E(x, Y, z)eth}’ Re{I:I (X, V, z)eth}
and the time-averaged Poynting vector is

T

— 1 - 1 — , .= *

W, :?d/V(x, y, z,t)dt :ERe{E(x, v,z2)” H(X,Y,2) }
0

The time-averaged value can be found directly from the phasor fields quantities.
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Debye Modd (1)

The Debye model has been used to predict the interaction of EM waves with materials

since about 1910. Molecules are represented by positive and negative charge centers.
ELECTRON
CLOUD (-) NUCLEUS (+)

THE CHARGE CENTERS ARE COINCIDENT
IN THE ABSENCE OF AN EXTERNAL FIELD

The response of amolecule to an external electric field is expressed in terms of a
polarization, P(t)
P =e,CEqgy

ELECTRON »

CLOUD NUCLEUS (+)

CHARGE 7
CENTER(-) X

Thisisthe smplest form of adipole: two equal and opposite charges that are dightly
displaced. The separation that arises due to the external field is referred to asthe
electronic polarization and the quantity C isthe susceptibility.
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Debye Modd (2)

The susceptibility affects the electric flux density:
D(t) = e, E(t) +c (NE(t) = oL+ ¢ (W]E()

€r
It takes a finite amount of time for the molecules to respond to an applied external field.
The responseis of the form

P(t) = (e C(O)Eext) St
I:)O

0 15

where 1 istherelaxation constant (about 1 second).

Assumptions are that all dipoles are identical, independent, and all relaxation times are the
same. Infact, dipoles are spatially and temporally coupled, relaxation times vary, and
other types of polarization exist. The Debye modd is never seen in real materials, but it
can be approached for single particle non-interacting systems such as gases.

Other types of polarization:
lonic: mutual displacement of the charge centers (10" 12 second)
Orientational: rotation of the molecules (10" second)

10
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Debye Modd (3)

The modern view isthat media have afar more complex EM relaxation behavior than
previoudy realized. Much of this has arisen from research involved with ultra-short pulse
lasers interacting with materials. New theories have been devised. The most promising in
the Dissado-Hill model that takes all of the spatial and temporal factors into account:

- Individual polarized molecules (dipoles) have ahomogeneous lifetime, T,.

- In the coupled environment, the dipoles have an inhomogeneous lifetime, T, that can
be greater than or lessthan T,. Theinhomogeneous lifetime depends on the number of
other dipoles and their distances, aswell astheir relaxation times.

- Absorption of awave passing through a material takestime. If T, > T, then energy

extracted from the wave as it passes through the material can be returned back to the
wave.

This condition is called self-induced transparency the wave can penetrate the medium
without loss and therefore any radar absorbing material would be useless. This effect may
have been observed at optical frequencies (interpretation of the dataisin question).

11
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Permittivity of a Dielectric With Loss

- Example of amaterial with resonances in the millimeter wave frequency region
- Complex dielectric constant: e, =e(- je«
- Below millimeter wave frequencies, e(3 1 and approximately constant and e» 0

o~ ol N Phase velocity (e¢ istherea part)

u —

1
P et

High frequencies travel faster than
low frequencies

W
b

12
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Precursors (1)

Monterey, California

Examine the transmitted wave that has a very narrow pulse:

|
ENVELOPE | CARRIER
-

When a conventional waveform passes through a material, the waveform out of the
material is atime delayed replica of the waveform at the input. (We assume that the
waveform has along pulse width compared to the relaxation time of the material.) The
group velocity uy is usually taken as the velocity of energy propagation in the material.

(Neglecting distortions due to dispersion.)

TIME
REFERENCE

CARRIER
rﬁﬂ_ﬁm{ Jlm‘/ ENVELOPE TME
Y
< THOUGH MATERIAL - MHMM Ti/lE
y VTYVTY

13
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Precursors (2)

Precursors are features in waves transmitted through media due to the ultra-fast rise and fall
times of the pulse envelope. They occur because the transferal of energy is not
instantaneous. There are two types of precursors.
1. Sommerfeld: Due to the high frequency components of the pulse envelope
- Travels at the speed of light
Largely independent of the medium
2. Brillouin: Due to the low frequency components of the pulse envelope
Depends on the waveform properties (rise/fall times, carrier frequency, initial and
final values, €tc.)
Depends on medium properties (mobility of carriers)

Penetrates more deeply into the medium (~ z° Y2 s ~e 2 for Sommerfe d)
EXAMPLE: AMPLITUDE SOMMERFELD BRILLOUIN ~ MAIN SIGNAL
VSTIME PLOT
FROM T.W. BARRETT, - ULTRA SHORT
INTRODUCTION TO ULTRA- L PULSE
WIDEBAND RADAR SYSTEMS h, N
- T >
CONVENTIONAL

PULSE

A |

14
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Propagation in Lossy Media (1)

As waves propagate through alossy medium, energy is extracted from the wave and
absorbed by the medium. There are three general sources of |oss:

1. ohmic loss, which is due to the collision of free chargesin a conductor, and is
accounted for by afinite conductivity, s <¥ (s =¥ isaperfect electric
conductor, PEC)

2. dielectric |oss, due to polarization of molecules caused by an external electric field,
and it is accounted for in the imaginary part of e,

3. magnetic loss, due to magnetization of the molecules caused by an external
magnetic field, and it is accounted for in the imaginary part of n.

Most materials are non-magnetic (1 = ) and therefore magnetic losses can be neglected.

For all other materials, either ohmic loss or dielectric loss dominates. For an imperfect
conductor, an equivalent complex dielectric constant can be derived by introducing the
conduction current into Maxwell’ s second equation

S O-
——E
jWg
;ﬂf—/

e

C

~

N "H=J+sE+ jweE=J + jw

CD*V88

15
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Propagation in Lossy Media (2)

The attenuation constant determines the rate of decay of the wave. General formulas for
the attenuation and phase constants of a conductor are:

| > UPU ..1/2
a=w|'rT2E 1+§eS 0 - 1dy b w,rme\/1+ > 9 +1,
T % Weﬂ Hb We g
’é\ 1

For lossessmedias =0b a =0. 2 ﬁ
Traditionaly, for lossess cases, k is .4l
used rather than b . For good 3,
conductors (s /we>>1),a » ./p mfs , g or
and the wave decays rapidly with T |
distance into the material. A sample 2| \
plot of field vs. distance is shown. T of
(To apply the formulas to a dielectic K e IO MATERIAL (1 :

with losses, substitute e ® e( and
s /w® et)

16
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Surface Current and Resistivity (1)

For good conductors the current is concentrated near the surface. The current can be
approximated by an infinitely thin current sheet, with surface current density, J. A/m and

surface charge density, r ¢ C/m?

Current in agood conductor Surface current approximation
l_’Ei =
ki BOUNDARY K BOUNDARY
= 7
= ] s
.

At an interface between two media the boundary conditions must be satisfied:

DAy (B- B)=0 (Qhx(E- B)=rsle
(2)N1 " (Hi- Hp)=Je (4)hpx(H1- Hy)=0

> INTERFACE

REGION 2

17
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Surface Current and Resistivity (2)

Thefield in agood conductor is significant only within the first skin depth from the
surface. The skin depth is the distance into the material at which the amplitude has
decayed by afactor of 1/e.

|

I

SMALL RECTANGULAR
BRICK AT THE SURFACE

\f4

The resistance of theblock is R = LA = ti . Where A isthe cross sectional areatransverse
S stw

to the direction of current flow. If we choose a square of surface area, / =w, and the
thickness a skin depth t =ds (to be defined later, p. 40), then the result is the surface

1 . It has units of “ohms per square” (W/0)

resitivity, which is defined as R, = :
SO¢

18
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Surface Current and Resistivity (3)

For a plane wave normally incident on a metal surface, the time-averaged power density
in the material is

2 2 a2
W, :}Re{E' H }_—R I Eo Zaz_” E°2 e 2ZReh} = z—ZREg e AZ
: 2 TR Y 2n|

It isassumed that E, isreal for convenience. For agood conductor theintrinsic
impedance is approximately
1+ |
sd.
(Note that the real part is equal to the surface resistivity previously defined.) We can

replace the original infinitely thick medium with an infinitessmally thin sheet that satisfies
the same boundary condition:

h°o R+ jX»

— — —_

A"H=J, ® A" A"H=A"J, ® A(p-H)-H(A-A)=A" Jg
=0
. k“E_-A"E . . .
where H = — = and h ¢ isthe surface impedance of the thin sheet.

n
n

19
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Surface Current and Resistivity (4)

The boundary condition can be written as

—

hAi”J.=A"E ® h.J.=Eq,

and the power dissipated per unit width by the current flowing on the boundary is

TR T TR
HO$:-§Re{E | n:-ERe_:'_n E - Hy
thsh” Js b
| U152 = (2
1 | = s —»*'III J J
=5 RethsJs -0 H y:‘ ;‘ e} = ;‘ R
} Js b

The surface impedance concept gives a convenient means of computing the ohmic loss of
conductors. We can avoid integrating the volume current inside of the conductor (a
volume integral), and need only integrate the surface current (asurface integral). Thisis
only an approximation, but it is very accurate for good conductors. These calculations are
necessary in order to determine transmission line loss.

20



Naval Postgraduate School Department of Electrical & Computer Engineering Monterey, California

Circular Polarization (1)

A circularly polarized plane wave can be obtained by superimposing two equal amplitude
linearly polarized plane waves that are in space and time quadrature (quadrature implies 90
degrees):

1. space quadrature, E;* E, (for example, E, vs. E,)
2. phase quadrature, a e P /2 factor between the two fields
Example: Two linearly polarized plane waves propagating in the z direction
= _ o - b = _ - joz *jp /2
E, = XE,,e '™ and E, =JE, & PP
Equal amplitudes, E, = Ey.° Eo
=N _ g = N om o iPZ oy om am JDZaEiP/2 _ = o ibZ(on i
E(2) = E((2) +E,(2) = kE e P2+ §E e 1P2e* P72 = E e 1P%(%4 j §)

)

The instantaneousvaueat z=0 is

E(zt) = RE(2)e!" | = RE, coswt) F JE, sin(wt)

The vector rotates about the zaxis. Thetip of the electric field vector traces out a circle of
radius E,. The direction of rotation depends on the sign of j.

21
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Circular Polarization (2)

The designation of RHCP is determined by the right-hand rule: the thumb of the right hand

Is pointed in the direction of propagation, and the fingertips give the direction of rotation
of the electric field vector. Similarly, LHCP satisfies the |eft-hand rule.

A X AX )
2 1. -®
y <+ ! Ii y <+ :
. LEI_—I—_HAND CI RCU LAR /l” “\\\ RI GHT'HAND CI RCU LAR /,/
" POLARIZATION (LHCP)” . POLARIZATION (LHCP) -

~————— =~ SN—————

The above signs hold for € bz | Eyo ! Eyo then the tip of the electric field vector
traces an ellipse. The resulting polarization isreferred to as elliptical polarization.

22
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Example

We want to find the reflected field when a RHCP plane wave is normally incident on aflat
perfectly conducting surface,

Ei(2) = %E,€ 177 - j9E e 177
Assume that the reflected field is of theform |
E,(2) =XExe" bz 4 9Erye+ bz
Thetotal tangential field at the boundary (z =0) must be zero

E (9 +E (2) =X(Eo +En) + I(Ery - [Eo)° 0
Equate x and y components to obtain

Erx = ) Eo B
E,y = jE Ei
—
Thetotal field is ,Z
E, (2) =- REge" 7% + j9E e I D
Er

whichisa LHCP wave. 7=0

23
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Spherical Waves (1)

An ideal point source for el ectromagnetic waves has no volume. |t radiates a spherical
wave (i.e., the equiphase planes are spherical surfaces). An arbitrarily polarized spherical
wave can written as

. - jbR R -
E(R) == (Eqed + Erof )

‘4 - R= distance from the source (Note that
If the source is at the origin of the
spherical coordinate system then R=r.
Thus we will move the source to the
origin and user in the next few charts.)

e

- h =impedance of the medium, assumed
to be red

- Ego, Ef o @re complex constants

24
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Spherical Waves (2)

Spherical waves are TEM, so the magnetic field intensity is

; G+Edf) o e, .
(=K EO.f (qu:f g io - i)

and the time-averaged Poynting vector (assuming Eqq, E;, arereal)

Wi, = RelE()” H (r)} (quq+Efo VB +Eyf)
:ﬁ((qu) +( o)z)r

The power flowing through a spherical surface of radiusr is

. - 1 24 2pp
:dblva\/dSZEgEqu)ZJr( ) OO_ Fof 1?2 sng dq df
S Bo ol

17}

SR (8 e =) ()

=2

25
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Spherical Waves (3)

Note that the power spreads as iz (the “inverse square law”). We will see that afar field
r

region can be defined for any antenna. It isthe region beyond a minimum distance, r ,

where the wave becomes spherical with the following properties.
1. the wave propagates radially outward
2. 1tISTEM (thereareonly g and f field components)

3. the field components vary as %

At alarge distance from the source of a spherical wave, the phase front becomes|ocally

plane.
FAR FIELD
LOCALLY A GOOD
APPROXIMATION TO
A PLANE WAVE
&
SOURCE SOURCE o r 4

26
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Spherical Wave Amplitude

Snapshot of a spherical wave propagating outward from the origin. The amplitude of the
wave E(r,t) :d%cos(wt - br) inthe x-y planeisplotted at timet =0

ELECTRIC FIELD INTENSITY

2007 =100 Y, raters

X, metars

27
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Ray Representation for Waves

- Rays are often used to represent a propagating wave. They are arrows in the direction of

propagation (I2) and are everywhere perpendicular to the equiphase planes (wavefronts)

- The behavior of rays upon reflection or refraction is given by a set of rules which form the
basis of geometrical optics (the classical theory of ray tracing)

- Wewill seethat if an observer gets far enough from afinite source of radiation, then the
wavefronts become spherical

- At even larger distances the wavefronts become approximately planar on alocal scale

SPHERICAL WAVE FRONTS PLANE WAVE FRONTS

/ \

RAYS >

R

28
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Wave Reflection (1)

For the purposes of applying boundary conditions, the electric field vector is decomposed
into parallel and perpendicular components E = Ex + E"

E. isperpendicular to the plane of incidence
E; liesin the plane of incidence

The plane of incidence is defined by the vectors k; and n
DECOMPOSITON OF AN ELECTRIC FIELD

PLANE WAVE INCIDENT ON AN
VECTOR INTO PARALLEL AND
INTERFACE BETWEEN TWO DIELECTRICS PERPENDICULAR COMPONENTS
TRANSMITTED 7
A
dt N
MEDIUM 2 E E
€, I

€, m

¢ INTERFACE \ Ex

MEDIUM 1 qi 'q,

NORMAL

INCIDENT REFLECTED

29
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Wave Reflection (2)

Monterey, California

FREESPACE ¢
n

e, m

DIELECTRIC

»Z

PERPENDICULAR POLARIZATION

FREE SPACE

e m

DIELECTRIC

n -
EI’

A~

Ky

=

th

E.” &

PARALLEL POLARIZATION

Theincident fields (E; ,H;) are known in each case. We can write expressions for the
reflected and transmitted fields (E, ,H, ) and (E;,H), and then apply the boundary

conditionsat z =0;

(Ei * ErXtan :(Et)‘tanand (Hi +Hr1tm

(HtXtan

There is enough information to solve for the coefficients of the reflected and transmitted

waves.
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Wave Reflection (3)

Naval Postgraduate School

Summary of results: Reflection and transmission coefficients:
y
REGION 1 REGION 2 Perpendicular polarization:
FREE SPACE G. = N0osq; - hocosyy
e, m, DIELECTRIC h cosg; +hg cosoy
" S ™ (. = 2h cosq;
] h cosg; +hgcosg;
[
n < q qt Er/\ =G Ei/\ and Et/\ ={ A Ei/\
r
Pardld polarization:
" INTERFACE G = h cosg, - hg cosg;
| | | h cosg; +hgcosg;
ani :anr = ern’], SII’]C]t t B Zf] Cosqi
I~

h cosg; +hgcosg;

hO:\/%andh: /%:ho\/g
Er = QB and By =t E;

31
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Wave Reflection (4)

Monterey, California

Example: A boundary between air (h, =377W) and glass (e, =4,h =188.5W\).
See the following charts for plots of reflection coefficients vs. incidence angle.

Two specia cases:

1. Brewster’s angle is the incidence angle at which the reflection coefficient is zero. For
parallel polarization thisrequiresh cosg; - h, cosg; =0, or

COSQ); :hic:osqt :hi\/l- sin®ay :hi\/l- isinzqi b qg=tanl. /e, =634°
(0]

o) 0] el’

2. Total internal reflection (q; =p /2) occurs at the critical angle of incidence, when the
wave is impinging on the boundary from the more dense medium

snq _ [me_ sin(p /2) me

sng; MyEo SITep MHEo

=

- Je; b sing, =

Thisisthe basis of fiber optic transmission lines.

5 P q.=30

32
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Wave Reflection (5)

Monterey, California

Boundary between air (e, =1) and glass (e, = 4)

AIR-GLASS INTERFACE,WAVE INCIDENT FROM AIR

PERPENDI

CULAR

POLARIZATION

PARALLEL
POLARIZATION

BREWSTER'S

ANGLE

10 20 30 40 50
theta, degrees

60

70

80

90

[gamma|

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

PERPENDICULAR
POLARIZATION

PARALLEL
POLARIZATION

AIR-GLASS INTERFACE,WAVE INCIDENT FROM GLASS

0 10 20 30 40 50 60 70 80
theta, degrees

90
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Wave Reflection (6)

Monterey, California

Example of aplane wave incident on aboundary between air and glass (e, = 4,q; = 45)

INCIDENT WAVE
10 . . .

TRANSMITTED 8
6
o, 4
GLASS
2 BOUNDARY
¢ N
AIR g 'O
NORMAL

INCIDENT REFLECTED

34
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Wave Reflection (7)

Example of a plane wave reflection: reflected and transmitted waves (e, = 4,q; = 45)

REELECTED WAVE TRANSMITTED WéVE

10

BOUNDARY
: BOUNDARY

35
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Wave Reflection (8)

Example of a plane wave reflection: total field

10

- Thetotal field inregion 1 isthe sum of the
incident and reflected fields

L /]

- |f region 2 is more dense than region 1
(i.e., e, >e€,q) thetransmitted waveis
refracted towards the normal

- |f region 1 is more dense than region 2
(i.e., €1 >€,o) thetransmitted waveis
refracted away from the normal

36
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Example (1)

An aircraft is attempting to communicate with a submerged submarine directly below. The
frequency is 0.5 MHz and the power density of the normally incident wave at the ocean

surfaceis 12 kW/m?. The receiver on the submarine requires 0.1 nV/m to establish a
reliable link. What is the maximum depth for communication?

H; E
AlIR
~ =0
K n,€0,S
X
220 +— = 7777
OCEAN
V4
! A m,,e, =72,s =49m
kt
The phasor expression for the incident plane waveis E; (z) = XE, €’ IPoZ \yhere
- 108
b, =w./me :2_p’ I =E=ﬂ:6oo m. Thetime-averaged power density is
° 1y % f 05 10°
0 .

given by the Poynting vector, ’\/Y/a\,i (z)‘ = %‘ E (2 H: (2)
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Example (2)

At the ocean surface, z=0, and from the information provided we can solve for E,
N Eol® o 1o 13 2 2 r a3
Wa, (2) = o012 100 Wim® b [Eo|” = (12" 10°)(2)(377) P |E,|=3008 V/im
0}

Below the ocean surface the electric field is given by E;(z) = XEt e 94, where the
transmission coefficient is determined from the Fresnel formulas

c=""M0 adt =146
h +hg h +hg
To evaluate this we need the impedance of seawater
h :\/ m = My = M
e .S 0
M Ll b eoergi'j > g
W €W g
Note that > - 4 = 2000 >>1whichistypica of agood

€W 2p(5° 10°)(8.85° 10 )(72)
conductor. Thuswe drop the 1 in the denominator for good conductors.
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Example (3)

h» /][0 -1 ] Wnb =0.7(1+ ) =0.9899e/%" o p|el
S

N
Now the transmission coefficient is
2 21+ ))(0.7)

= = =5.25" 10 3el#89 o i |elFt
h+h, (1+j)(0.7)+377

At depth zthe magnitude of the electric field intensity is
1/2

‘Et(z)‘ \/Et(z) Et(z) _e(XE'[ e (a”b)z) (XE'[ e (a+1b)z) L et |e??

d

where the attenuation constant is
A/2

|rre 2%‘

a= W| 1+
gweﬂ b

» 1/W"23’S = Jp fmys =-/p (5" 10%)(4p " 10" 7)(4) = 2.81Np/m
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Example (4)

Similarly, for agood conductor the phase constant is

N .1/2

] é .2 Uk

b :W!'—rrz.e s 1+%—9 + 'j'tj » anbs
<8l EWeO  Hy

At what depth is|E;(2)| = 0.1mV/m?

=a

0.1 10" ° =|E, |t |e #%'* =(3008)(5.24" 10" %)e” =%
- 2.81z=-18.88
2=6./m

A common measure of the depth of penetration of the wave in a conductor isthe skin
depth,d.. Itisthe distance that the wave travelsinto the material at which its magnitude is
1/e of its value at the surface

E (0 =|Et|et =|Eoft|€* P adg=1 P ds=1/a=1/./p frs

(Note that for a nonmagnetic conductor n=nmn,.)
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Example (5)

The instantaneous (time-dependent) expression for the field is
E (z,t) = Re{>“<t E,e P Zeth}

Notethat in general E, can be complex and writtenin polar form E, = \Eo\ej': °, The

phase depends on the altitude of the transmitter and the phase of the wave upon leaving
the aircraft antenna. We can not determine F , from the information provided, and
furthermore, it is not important in determining whether the link is established. Thus,

E.(z.t) = Re&t eIt E,fe/F oe <a+1b>zelwt} xltHEo\eaZcos(wt- bz+F o +F,)
"E(2 _ _YEL g2z
h

The magnetic field intensity phasor is H(z) = “and the

Instantaneous value

F
\h\e |3

_xlt‘l\ll‘fo\ azcos(vvt- bz+F,+F; - Fh)
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Common Two-Wire Transmission Lines

Twin lead or two-wire

DIRECTION OF
PROPAGATION
U
CONDUCTOR E~ CONDUCTORS
SEPARATION d / (RADIUS a)
Coaxial (“coax™)
DIRECTION OF INNER CONDUCTOR
PROPAGATION ' (RADIUS 2)
E s SR
i OUTER CONDUCTOR
! (RADIUSD)
Microstrip
CONDUCTOR
DIRECTION OF SUBSTRATE
GROUND PROPAGATION
PLANE

(DIELECTRIC)
#

| ‘v v v 9]
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Distances Relative to Wave ength

- The behavior of voltage and current waves on transmission linesis distinctly different for

high frequencies than it is for low frequencies.

- For low frequencies (defined by circuit dimensions and distances << than the wavelength)
“lumped” elements can be used to predict the current and voltage. A lumped element
exists at apoint in space. Thisisthe standard “AC” circuit analysis assumption.

- Example: at 60 Hz the wavelength is 5 million meters. The length of a1 cm resistor is
insignificant compared to a wavelength, therefore the lumped element assumption is valid.

- At high frequencies (defined by circuit dimensions and distances >> than the wavel ength)
the lumped element model is not valid.

- Example: at 10 GHz the 2cm
wavelengthis3 cm. The length >
of al cm resistor is on the same — A
order as awavelength. The Current in the
lumped element assumption is resistor at:
not valid. A: 100 MHz
B: 1GHz
C: 10 GHz
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Transmission Line Equations (1)

A short length (Dz) of atwo-wire transmission line has the equivalent circuit shown
below:
i(z+ Dz,t)

i(2,1)
A ‘JULUI“ B
N

v(z,1) G¢$ —C¢ \_/(Z+DZ,t)

Dz
>

<

RCisthe total resistance of the conductors (\W/m)

L ¢ is the inductance due to the magnetic field around the conductors (H/m)

C(isthe series capacitance due to the electric field between the conductors (V/m)
G( istheisthe conductance due to loss in the material between the conductors (S/m)

Special case: lossesstransmission line

1. perfect conductors, s =¥ and thereforeR(=0
2. perfect dielectric filling the region between the conductors, e¢=0 and

therefore G(=0
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Transmission Line Equations (2)

Use Kirchhoff’ s voltage law at node A and take |im
Dz® 0

~ (z1) = RE(z,1) + L I‘ﬂi(z,t)
9z 1t

Use Kirchhoff’ s current law at node B and take Iim
Dz® Q

@Y Gzt +ceEY
9z Mt

For the time-harmonic case 1/t ® jw
_adv(2) ~(

Re+ jwLdl(2) (D)

di(z :
S - (o jwcdv () (2
Thisisaset of coupled integral equations. Take d/dz of (1) and substituteit in (2) to get a

second order differential equation for V(z)

2
d dzgzx (Ro+ jwL§(Go+ wCV (2) =0
°g

2
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Transmission Line Equations (3)

The propagation constant is determined from the transmission line parameters

g =-/(R&+ jwLYGe+ jwCh° a + jb

The phase velocity is Uy =w/b.

In asimilar manner adifferential equation can be derived for the current. Together they
are the transmission line equations (wave eguations specialized to transmission lines)

dNV(2) d?1(2)
-g“V(2)=0 and -
dz? oV dz?

A solution for the voltage is

gzl(z):O

V(z)=V]e %+, e'¥

Thefirst term isawave traveling in the +z direction and the second a wave traveling in the
-z direction. If thisisinserted into (1) on the previous page then the result is

-9 o F /T ot
1(2)=———NV,e %-V e
(2 R¢+jWL¢(° ° )
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Transmission Line Equations (4)

The corresponding solution of the differential equation for the current is
1(2)=1e % +1,e'%

Comparing the coefficients of the terms in the two equations gives the characteristic
Impedance

Vo _ Vo _R&+jwLe¢_ g  _ [R&+jwle
o g g GG+ jwCe |G+ jwCe

Example: Airline (e =ey,m =ngy,s =0) with perfect conductors (S .ong = ¥ ) operates at
700 MHz and has a characteristic impedance of 50 ohms and a phase constant of 20 rad/m.
Find L(, CCand the phase velocity.

Snce Ri=G(=0 b a=0, and g=-/jwL$wCC= jw-/LEC jb = j20
_ | R¢+ jwLe _ [LC
Z, = : =.|=
G¢+ jwCe \Cc¢

L (=227 nH/m. The phase velocity isu, =w/b =1//LE¢=2.2" 10° m/s=0.733c.

=50. Solve the two eguations to obtain C(=90.9 pF/m and

47



Naval Postgraduate School Department of Electrical & Computer Engineering Monterey, California

Transmission Line Equations (5)

Formulas are available for computing the transmission line parameters of various
configurations. For example, a coax with inner radius a and outer radius b:

= PSP Le="in(b/a), Re=TS(1/a+1/b)
In(b/a) In(b/a) 2p 2p

f . . . .
whereR; = F’SM IS the surface resistance of the conductors, ., iSits permeability
cond

and s .ong 1ts conductivity. Notethat i, e and s are the constitutive parameters of the
material filling the medium between the conductors.

For transmission lines that support transverse el ectromagnetic (TEM) waves the following
relationships hold:
(
LC(=ne and S_s
Ct e

An important characteristic of TEM wavesisthat E, H and the direction of propagation
2 are mutually orthogonal. That is, the electric and magnetic field vectorsliein aplane
transverse to the direction of propagation.
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A transmission line circuit is shown below. The source (generator) and recelver are
connected by alength ¢ of transmission line. Assumealosdessline(g= jb)

Zg lin I
e +
Vy C) Vi Z, \A Z,
7=-/ 2=0

The current and voltage on the line are given by

. . + ) _ .
V(z)=V.Se P2 1v:e" 1P and I (2) :V_oe- jbz _ V_oe+1bz
o 0 ~ >
0 0

The boundary condition at the load (z =0) can be used to derive a reflection coefficient

_V(0) _Vg +V, Vo _Z-Z
P G=
1(0) Vg Vv V) Z +Z,
Z, Zo

= 00 ‘quFG
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Transmission Line Circuits (2)

Three special load conditions are:

1. If the load is matched to the characteristic impedance of the linethen Z;, =27, and
C=0

2. If thelineis open circuited then Z, =¥ and C=1 (| =1,F ¢ =0)

3. If thelineis short circuited then Z, =0 and C=-1(|§=1,Fc=p)

Thetotal voltage at a point on the lineis given by
. . > . V. .0
_\/*o D - jbz _\,+&- jb bz 2
V(2) =V, e P +V el =V Ce 1P + -0 elPe7

Vo )
:VO+(e- Jbz+Gerz):VO+ (e- ij+‘quF Gejbz)

V(2| =V @V @) =g {14162 + 2Gcost2bz +F o)} ?
The maximum and minimum values of the voltage are
Vmax :’V‘max :’Vo+ (1""(3{) and Vmin :’V‘min :’Vo+ (1' ‘G{)

If C1 0 thereisastanding wave component to the voltage and current.
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Transmission Line Circuits (3)

Voltage plots for three load conditions (I =1m):

G =-1(SHORT)
2 : .
i 15 ¢t
| Z, A
: > 1
z=-25 z=0
05
0
-2 -1 0
G =1 (OPEN) z
2 2 ip/3
—_ Ip
15 15 G =0.2e |

VI
-
VI
=

-2 -1 0 -2 -1 0
V4 4

The load impedance for the last case can be computed from the reflection coefficient

20225 _Z-1_(00ipl3 p ggo 2L 14C
Z, -7, Zg-1 Z, 1-G

G=

=114+ j0.41
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Transmission Line Circuits (4)

- Voltage maxima occur when cos(2bz+F -)=1 P 2bz+Fc=-2np. (Notethat
increasing nisinthe—zdirection.) Maxima are spaced | /2.
- Voltage minima occur when cos(2bz+F)=-1 P 2bz+F:=-(2n+2p.Minima

arespaced | /2.
Mia ~ A+19) ot that

Muin ~ (1-1G)

- The voltage standing wave ratio (VSWR) isdefined as s=

1<s<¥.

Plot of voltage and current for Zf =0.1 (I =1 m).

2

18F

16

14F

1.2F

[VIor i

1k
0.81
0.6 |
0.4,

e A
4 )
0.2 4 N
i L]
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Transmission Line Impedance (1)

The impedance at any point on the lineis the ratio of the voltage to current at that point

At theinput of theline z=- /¢
1+ Ge 127 _ 67, +jz,tan(bl)u
1- Ge 120" TO¥Z, + jZ tan(bo){

Zin =<4

For the purpose of computing the power delivered to the load, the load and transmission
line can be replaced by an equivalent impedance Z;,,

Zg_:iL Imzzvfgz_ and Vin:|inzin:%
+ + | 9 In g In
Vg C) Vin Zin The power delivered to the load and line combination is
- | Fn :Vinli*n
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Transmission Line Impedance (2)

Power on alossless line is computed from the voltage and current
V(Z) :Vo+e_ Jbz + (’\/oJreJrij :Vinc +Vref

+ . + .
I(Z):\;—e- JbZ_ GVO +Jb2:|

— € inc + | ref
. o J . O J
INCIDENT REFLECTED
WAVE WAVE

The incident instantaneous power in the incident waveis

R =RelV, e |Rdl; e}
_ _ ¥ + |F R + 2
:Re{|VO+|eJF°eJ""t}Re}|V° je” ° ejmyzlvo | cos®(wt +F )
1 L, b Ly

where it has been assumed that Z, isreal. A similar analysis of the reflected wave yields
Vo [

P =- [Goos*(wt+F o +F g)

0]
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Transmission Line Impedance (3)

The time-averaged power is obtained by integrating the instantaneous value over a period

T + 2 1/f + 2 + 2
P, =L ermdi=Ye "y com+E )=V P Mo Vo |

Similarly for the reflected power
2
Pav, =-|G" Py,

and the average power delivered to the load is

Pov, = Ry *Fay, =

ARG
27

ol

In order to deliver all power to the load we must have ‘qz ® 0.
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Transmission Line Impedance (4)

Input impedances for the special load conditions

é0+ jZ, tan(bf)u

°ez + jotan(b/)
+]Z, tan(bﬁ)u Z,

OeZ + j¥ tan(b0)  jtan(br) b(® 0

1. Short circuit: Z3> =Z tan(bé) jZ b/ which isinductive

2. Opencircuit: Zp" =7

- JZ, /bl whichis

capacitive

eZ, + jZytan(bl)u _
Oez + jZ, tan(b0)

3. Matchedline: Z,, =Z =Z, (Noteitisindependent of theline

length.)
Input impedances for some special line lengths:

ez +jZ, tan(p)u
°8Z, + iz )l "

ez + jZytan(p /2)u _
087 +jz, tan(p /2)H

1. Half-wavelength line: Z;, =Z

2. Quarter-wavelength line: Z,, =Z

=7217,
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|mpedance Matching

For “off-the-shelf” components that must be used in a system, fixed values of Z, are used.

Common values are 50, 75 and 300 ohms. Most devices (antennas, couplers, phase
shifters, etc.) are not “naturally” 50 ohms. An impedance matching circuit must be
inserted between the 50 line and the device. The impedance matching circuit is usually
Incorporated into the device and sold as a single package as illustrated bel ow.

MISMATCHED MATCHED
JUNCTION JUNCTION
\ \ IMPEDANCE
Zy i Z Z, i, | maTCHING Z
j i NETWORK
Z, Zo

Three common matching techniques:
1. quarter-wave transformers
2. stub tuners
3. series and parallel lumped elements

In general, the imaginary component of the load impedance must be cancelled and the red
part snifted to Z,
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Quarter-Wave Transformers (1)

MATCHED

JUNCTION <= | /4 >

Z, 28 | L]A
Zin =2,

If a quarter-wavelength section is inserted between the transmission line and load, the
Input impedanceis

ez +jZg§tan(p /2)u

gezéﬂ jZ, tan(p /2){

z$1z2,°2, b 28=.Z.Z,

Note that all of the impedances involved must be real.

Example: What is the characteristic impedance of a quarter-wave section if it isto match
a 100 ohm load to a 50 ohm line?

2$=./Z,Z, =+/(50)(100) =70.7W
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Quarter-Wave Transformers (2)

A quarter-wave

. : 100 W 200 W 400W < 400 W
transformer is designed so
that reflections from the
two junctions cancel _ .
ivai G=1/3 | G=-1/3 G=1/3
(destructive interference). Coaal £ooya C —4/a

If the frequency is changed

from its design value, then Y 1T> 3 j4/3 159 )
the cancellation is no U3 < 419 <)
longer complete. [ -8i27 T

'\ 4/27 jar27 SUMS

| ) > 16/81 TO 2V

/243 T e

-8 |

SUMS i

TO -U3V |\ 4/243 j4243

ROUND TRIP GIVES p
PHASE SHIFT (- SIGN)
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Transmission Line Loss and Attenuation

Consider alength ¢ of transmission line

—> . —>
2
Rn ~|Ein|2 i Fou ~|Eout|
) ¢ g

If the incident wave is TEM, then the field at the output can be expressed as
|[Equt| =|Einle™®" and the transmission coefficient of the section is

/ Eout

"[ ‘ — ‘Eout‘

E, %: 20Iog(e'af)

17

a4
=e® b ty :20Iog§

in
Example: A shorted 5m section of transmission line has 8 dB of loss. What isthe
attenuation coefficient?

Because the line is shorted the wave travels 10m and therefore,
- 0.4
Viogle @ )=-8 p e =10®D p g _ o %) =0.092 Np/m
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Waveguides (1)

Waveguides are an efficient means of transmitting microwaves. They can be hollow or
filled with dielectric or other material. The cross section can be of any shape, but
rectangular and circular are most common. First, we examine propagation in arectangular
waveguide of dimension a by b.

X

Waves propagate in the + z direction: E(z), H(z) ~ €* '??. First separate Maxwell’s
eguations into cartesian components (r,e refer to the material inside of the waveguide)

ﬂgz +JbE, =- jwiH, |
. M€, . Lo o
- JbE, - 0 =-JjwnHyyN" E=- jwnH

X o

I

E !

Ty TEx = jwnt, 1

™ Ty b
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Waveguides (2)

Monterey, California

H, : u

+ JbH, = jweE, -

Ty 4 o
: M™H, . l & = . =
- JbH, - 0 = JweEyyN" H = jweE

X bt

|

H .

I y-ﬂHX:jweEZ !

x Ty b

Rearranging

Ey = 2-J z%ﬂEz"‘WmﬂH—zg
wne- bce X v o
s Ak
wme- bce Ty X g
s (R
wne-bce Ty X g
= BelEe,y, TH
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Waveguides (3)

The wave equations are:

Rl N L 22 .
Notethat N° =—— +— +—— and —=(- jb)" =- b~ and the wave equations for the
™x= Ty~ 1z 1z
z components of the fields are

éﬂx 'I]y ] :(bz-wzma)EZ
g( ﬂl ZH =(b2- w2ne,

TEM waves do not exist in hollow rectangular waveguides. The wave equations must be
solved subject to the boundary conditions at the waveguide walls. We consider two types
of solutions for the wave equations: (1) transverse electric (TE) and (2) transverse
magnetic (TM).
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Waveguides (4)

Transverse magnetic (TM) waves. H, =0 and thus H istransverseto the zaxis. All field
components can be determined from E,. The general solution to the wave equation is

E,(XY,2) =E,(X, y)eijbz — EZ(X)EZ(y)eiij
= (Acog(b,x)+ Bsin(b Xx))(Ccos(byy)+ Dsin(b yy))ei jbz

where A, B, C, and D are constants. The boundary conditions must be satisfied:

O® A=0

I
E,=0a i/ _oe c=0

X
y
Choose by and b, to satisfy the remaining conditions.

E,=0a x=a: sn(ba)=0 P ba=mp b b= (m=12,..)

d
E,=0at y=b: sn(b,b)=0 b byb=np b by:% (n=12,...)
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Waveguides (5)

For TM waves the longitudinal component of the electric field for a+z traveling wave is
given by
E.(x Yy, 2=U Sn@xggn@ y-e jbz
g a g b 7

where the product of the constants AB has been replaced by anew constant U . Each
solution (i.e., combination of mand n) iscalled amode. Now insert E, back in the wave

eguation to obtain a separation equation:

2
bzzwzne_aﬁmpg 9
z 8 b ¢

If b?>0 then propagation occurs; b 2 = 0 defines a cuttoff frequency, men :

&EIO

i

Waves whose frequencies are above the cutoff frequency for a mode will propagate, but
those below the cutoff frequency are attenuated.
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Waveguides (6)

Transverse electric (TE) waves. E, =0 and thus E istransverseto the zaxis. All field
components can be determined from H,. The general solution to the wave equation is

H.(X,Y,2) = H,(X, y)eiij - HZ(X)HZ(y)eiij
= (Acos(b, x) + Bsin(bxx))(Ccos(byy)+ DSin(byy))eijbz

TH, &P 06 H, & 0
~cosc— Yy+and E ~ COSC—— X+
Ty Sgb yy) v H Tix Sg a g
Boundary conditions:. E,=0at y=0® D=0

E,=0a x=0® B=0

But, from Maxwell’ s equations, E, U

np
E,=0a y=b® b, =" n=01...
X y Yy~
E,=0a x=a® bxzm, m=01...
a
Therefore, H,(x,y,2) =V coséé—I xgcosgg’SE y9e' b2 (m=n=0 not allowed)
a ¢ b "¢

The same equation for cutoff frequency holds for both TE and TM waves.
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Waveguides (7)

Other important relationships:

- Phase velocity for mode (m,n), u, = u where u=1/./nme isthe phase

- NS

velocity in an unbounded medium of the material which fills the waveguide. Note the
the phase velocity in the waveguide is larger than in the unbounded medium (and can be

greater than c).
- Group velocity for mode (m,n), ug :u\/l- (men / f)z. Thisisthe velocity of energy

(information) transport and is less than the velocity in the unbounded medium.
- Wave impedance for mode (m,n),

LT, = h
J1- (fo 1 EF

Zrw,, =hafL- (fe /)
whereh =./m/e isthe wave impedance in the unbounded medium.

- Phase constant for mode (m,n), bmnzﬂzv—v\/l- (fC /f)2
up u mn
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Waveguides (8)

J1- (fo /TP

- Guide wavelength for mode (mn), | ¢ = where | isthe wavelength

in the unbounded medium.

The dominant mode is the one with the lowest cutoff frequency. For rectangular
waveguides with a > b the TE;q mode is dominant. |If a mode shares a cutoff frequency
with another mode(s), then it is degenerate. For example, TE;; and TM 1, are degenerate
modes.

Example: If the following field exists in arectangular waveguide what modeis
propagating?
E, = 552 x%nZ. ySe 122
a ¢ b~ ¢

Since E, * O it must beaTM mode. Compare it with the general form of aTM mode field
and deduce that m=2 and n=1. Therefore, it isthe TM »; mode.
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Waveguides (9)

Example: What isthe lowest frequency that will readily propagate through atunnel with a
rectangular cross section of dimension 10m by 5m?

If the walls are good conductors, we can consider the tunnel to be awaveguide. The
lowest frequency will be that of the dominant mode, which isthe TE;; mode. Assume
that the tunnel isfilled with air

f 0 C

1 o
==~ ®O0-_° _15MH
0 "2 /me, dap_ 2(10) ‘

Example: Find the five lowest cutoff frequencies for an air-filled waveguide with a=2.29
cm and b=1.02 cm.

(-1l lem& @en &
cm "5 e 1800295  &0.01024

Use Matlab to generate cutoff frequencies by looping through mand n. Choose the five
lowest. Note that when both m,n > 1 then both TE and TM modes must be listed. (The
frequencies are listed in GHz.)

TEy(14.71), TE1(6.55), TE1; and TM 11 (16.10), TE 5 (13.10)
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Waveguides (10)

Example: Find the field parameters for a TE;q mode, f=10 GHz, a=1.5 cm, b=0.6 cm,
filled with dielectric, e, =2.25.

Phase velocity in the unbounded medium, u=c/~/2.25=3" 10%/1.5=2" 10% m/s
Wavelength in the unbounded medium, | =u/f =2~ 10%/1" 10'° =0.02 m

CIN2.25 _ 4677 100 Hz

Cutoff frequency, f. =u/(2a)= =0.
_W > 2pf 2 -
Phase constant, by = —./1- | f [f) = 1- (0.067/1)° =74.5% radians
0= 1 e /1 = Gt (067 =745
I _0.02

=0.0268 m

Guide wavelength, | 4 = Jl- (fc /f)2 = 0745
mn

Phase velocity, u, =u/0.745=2" 10°/0.745=2.68" 10° m/s

_ h _ho/~225 _  (377)
B - (5, [t 0745  (0.745)(15)

Group velocity, uy =0.745u = (2" 108)(0.745) =1.49" 108 m/s

=337.4 ohms

Wave impedance, Ztg,,
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Mode Peatterns in Rectangular Waveguide

FromC. S. Lee, S.W. Lee, and L. L. Chuang, “Plot of Moda Field Digtribution in Rectangular and Circular Waveguides,” |EEE Trans. on MTT, 1985
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QUANTITY TEM (E, = H, = 0) ™ (H, = 0) TE(E, = 0)
WAVE 1! GENERAL:  Zyy-—3 GENERAL:  Zg -
IMPEDANCE, Z Zrem = h =\E ™ iwe TE
t>fe  hyl- (fo/ f)? f> fo %
f<fg dh b fo)? 1- (.\fvcnf D
we f< fe J
hy1- (/)2
PROPAGATION jk = jwyne GENERAL:  hy1- (f / f)? GENERAL:  hy1- (fo/ f)?
CONSTANT, g f>fe:  jb=jkyl-(fc/ )2 | > fe:  jb=jkyl- (fo/f)?
f<fe  a=hyl- (f/fe)? f<fe  a=hyl- (f/fe)?
PHASE 1 GENERAL : w/b GENERAL : w/b
VELOCITY, U, U= e £> fo: ___u £ f __u
1- (fe/f)2 1- (fe/f)2
f<f;: NOPROPAGATION | f<fs:  NOPROPAGATION
VECTOR FIELD - 1 ., = _ 0 0o 9
RELATIONSHIP H=-—k E Br=-12NrE Ry =- 12 NiH,
TEM ~ 1 B - N,
ZTM
h - [2 .2 I S
Cutoff frequency: f. =—F— Propagation constant: g =vh* - k Transverse Laplacian: Ny =——=+——
ps® |, aps’ |
For arectangular waveguide (a by b): h= gm—v +¢——  Guidewavelength: | g =
ag ebo 1- (fe/ )2
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Bandwidith (1)

The equivalent circuits of transmission lines and antennas are comprised of combinations
of resistors, capacitors and inductors. The transmission coefficient, or gain in the case of
an antenna, is frequency dependent. The range of frequencies over which the device has
“acceptable performance” is called the bandwidth of the device. For example, the gain of
atypical antenna has the following general frequency characteristic:

A

___________________________

—

f, f, o

Note that gain can be viewed as a scaled value of the antenna s transmission coefficient.
We will see that other performance measures, not just gain will determine its bandwidth.
Specifying frequencies where the gain exceeds the minimum value as in the operating
band, the bandwidth is f, - f_. The center of thebandis f, =(fy + f_ )/2.
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Bandwidith (2)

Information transmission systems, such as radar and communications, require afinite (non-
zero) bandwidth. Consider the following waveform as an approximation to a modul ated
carrier that aradar would employ. Inthetime domainthesignal is

Wol | o7 IWol HagnIWmt 4 o= Wt §
S(t) = COSWot) COsWit) = 6o Se e T2
2 ; 2 ;

The spectrum of this signal has two spikes centered about the carrier frequency, +w,

Bl 0 0t L It e,

VV"U | WVWVVH“V‘V V“\JWVU"VWUVWVV“U 1

Wq - Wy, Wy +W,
tot t gl
- W WO

Therefore, in order to pass this signal without removing any frequency components, the
required bandwidth is B =Df =2w,,. Thisisan example of a bandpass device. |deally we
would like the amplitude of the transmission coefficient to be constant over the passband.
It isusually “bell-shaped” as depicted in the previous chart. Common cutoff choices for
the edges of the band are the —3dB, —6dB, and —10dB points.
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Filter Characteristics

Filters are characterized by their transfer functions (i.e., Fourier transform of the impulse

response, h(t)) [H ()| =ft |=+/1- \qz , Wwhere C isreflection coefficient. It isusually
plotted as return loss in dB, 2010g40(/CG), or transmission lossin dB, 20logo(t]). Note
that in many cases the phase of the characteristic function is also important.

g A g
) 4
S o e S of- \ et
4 =z
o LOW PASS o PASSBAND
7 | PAssBAND FILTER 3 HIGH PASS >
= Df
e —
z f % - ¢
<
E_y0 > Ty -
fu fi fy =¥
o
| 5 BAND STOP
Sof | i : e
= Sy i i
5 BAND PASS z
3 FILTER PASSBAND %
= of = |PAssBAND STOPBAND PASSBAND
: g f
< - f 2 Df
F.y - =_y -

fi fu fL fy
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Coordinate Transform Tables

X y z
r | cosf dnf O
f | -snf cosf O
Z 0 0 1
Rectangular and cylindrical
X y Z
r | angcosf snqgsnf  cosq
d cosqcosf  cosgsnf - sSng
f - anf cosf 0

Rectangular and spherical

r f Z
r | sna 0 cosa
q cosg O -9nq
f 0 1 0

Cylindrical and spherical

Example: from top table, reading across,
r =Xcosf +ysnf

and reading down,
X=r cosf - f dnf

The tables also can be used to transform
vectors. The unit vectorsin the table
headings are replaced by the corresponding
vector components. For example, given

A= AR+ AT+ AZ

In Cartesian coordinates, the vector can be
expressed in cylindrical coordinates as

A = Accosf + Ajanf +A,>0
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Coordinate Systems

f =tan 18O
éxﬂ
q =tan 1 O
€70

®

ds, =fanqdq df

Direction cosines are the projections of
points on the unit sphere onto the xy
plane. They arethex,y, and z

— components of f':

u =dnq cosf
v =d9nq gnf
W = C0sq
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Azimuth/Elevation Coordinate System

Radars frequently use the azimuth/el evation coordinate system: (AzEl) or (a,g) or

(ge,f a). The antennaislocated at the origin of the coordinate system; the earth's surface
liesin the x-y plane. Azimuth is generally measured clockwise from areference (like a
compass) but the spherical system azimuth angle f is measured counterclockwise from the

x axis. Thereforea =360- f and g =90 - q degrees.
ZENITH

zA

CONSTANT
ELEVATION

HORIZON
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Radar and ECM Frequency Bands

Standard Radar Bands' ECM Bands?

Band Frequency Band Frequency
Designation® Range (MHz) Designation Range (MHz)
HF 3-30 Alpha 0-250
VHF* 30-300 Bravo 250-600
UHF* 300-1,000 Charlie 500-1,000
L 1,000-2,000 Delta 1,000-2,000
S 2,000-4,000 Echo 2,000-3,000
C 4,000-8,000 Foxtrot 3,000-4,000
X 8,000-12,000 Golf 4,000-6,000
K, 12,000-18,000 Hotel 6.000-8,000
K 18,000-27,000 India 8,000-10,000
K, 27.000-40,000 Jullett 10,000-20,000
millimeter® 40,000-300,000 Kilo 20,000-40,000

Lima 40,000-60,000
Mike 60,000-100,000

! From IEEE Standard 521-1976. November 30 1976.

2 From AFR 55-44 (AR105-96, OPNAVINST 3420.9B, MCO 3430.1), October 27, 1964.

3 British usage In the past has corresponded generally but not exactly to the letter-designated bands.

4 The following approximate lower frequency ranges are sometimes given letter designations: P-band
(225-390 MHz), G-band (150-225 MHz), and I-band (100-150 MHz).

5 The following approximate higher frequency ranges are sometimes given letter designations: Q-band
(3646 GHz), V-band (46-56 GHz), and W-band (56-100 GHz).
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Electromagnetic Spectrum

waveLenetn 6 0% 402 400 40?7 40* 10° 10® 1070 1072 10™ 10

(m‘ i Il 1 1 | [ [ i i i i
TELEPHONE RADIO MICRO- iNFRA- [ ULTRA-
VOICE ? WAVES ; WAVE i Rep Q| vioLET “‘R"j GAMMA-RAY 3
| | | | 1 || 1 | ] | | || ] ] |
1 3 5 7 g 11 13 15 17 19 21 23 25
FREQUENCY .5’ 40° 10° 10° 100 10", 10°MO0"~ 10" 10° 10 10= 10
(HERTZ) | 1 |
- I o
=7 VISIBLE "l "‘ - T
- T LIGHT ~ s
- o1 o4 TR - o7
FREQUENCY 10 \ 10 ~ -
(HERTZ) [ \ \
WAVELENGTH
(METERS) - -~
- ~
e VISIBLE e P
- LIGHT M
WAVELENGTH 07x10°8 08x108 05x10° 04x10°

(METERS) (0.7 um) (0.8 pm) (0.5 um) (0.4 um)
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Dimensions, Units and Notation

- International System of Units (S, also referred to as MKS, Table 1-1 in Ulaby)

Dimension Unit Symbol
Length meter m
Mass kilogram kg
Time second S
Electric current ampere A
Amount of substance mole mol
Temperature kelvin K

- Multiple and submultiple prefixes (see Table 1-2 in Ulaby)

Prefix ~ Symbol  Magnitude Prefix  Symbol Magnitude
exa E 1018 milli m 10" 3
peta P 1015 micco P 10" 8
tera T 1012 nano n 10- 9
giga G 109 pico p 10712
mega M 108 femto f 10°15
kilo k 3 atto a -18

10 10
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Deciba Unit

In general, adimensionless quantity Q in decibels (denoted Qyg) is defined by

Qus =10l0g;4(Q)

Q usually represents aratio of powers, where the denominator is the reference, and logg is

simply written as log. Characters are added to the "dB" to denote the reference quantity, for
example, dBm is decibelsrelative to a milliwatt. Therefore, if P isin watts

PdBW :10|0g( P/l) or PdBm — 10|Og(P /0001)

Antenna gain G (dimensionless) referenced to an isotropic source (an isotropic source
radiates uniformly in al directions, and itsgainis 1): Ggg =10log(G)

Notethat: 1. PositivedB values> 1; negative dB values< 1
2. 10 dB represents an order of magnitude change in the quantity Q
3. When quantities are multiplied their dB values add. For example, the effective
radiated power (ERP") can be computed directly from the dB quantities:

ERP gy = (PCG)gew = Pew + Gas

1
Note: The ERPisalso referred to as the effective isotropic radiated power, EIRP.
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Sample Decibel Calculations

1. A transmitter puts out 35 W. What is the output power in decibels?
answer: 10log(35) = (10)(1.544) =15.44 dB (generally dB implies dBW), or since 35 W is

35000 mW, 10log(35000) =(10)(4.544) = 45.44 dBm (or simply add 30 dB to the dBW
value)

2. A receiver has a sengitivity of =120 dBm. (a) How many dBW is this? (b) How many

watts?
answer: (@) - 120dBm- 30dB =- 150dBW

(b) 10715910 = 10" 5 W = 1 fw (femtowatt)
3. The light intensity at the input of 210 m optical fiberis2 W. Thefiber lossis 0.2 dB/m.

() what is the input power in dBm, (b) what is the output power in dBm, (c) what is the

output power in watts?
answer: (@) 10log( 2/0.001) = (10)(3.3) =33dBm
(b) (10m)(0.2dB/m) =2dB of total loss. Loss implies a negative dB _quantity,

therefore, the output power is33dBm -2 dB =29 dBm
(c) 1021° =10%° mw = 794.3mW = 0.794 W
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